公職王歷屆試題 (113 高考)

113年公務人員高等考試三級考試試題

等 别:三等

類 科:機械工程

科 目:熱力學

李函老師解題

- 一、壓力為 1 MPa、溫度為 350 K 的空氣穩態且等熵地流經一個流道,空氣速度為 200 m/s,試 求: (每小題 5 分,共 20 分)
 - (一) 静滯焓 (Stagnation enthalpy) (單位取 kJ/kg)
 - □ 静滯溫度 (Stagnation temperature) (單位取 K)
 - (三) 静滯壓力 (Stagnation pressure) (單位取 MPa)
 - 四馬赫數 (Mach number)
 - 註:假設此空氣為理想氣體,空氣的等壓比熱與等容比熱皆為定值,等壓比熱 $C_p=1.005$ kJ/(kg·K),等容比熱 $C_v=0.718$ kJ/(kg·K),氣體常數 R=0.287 kJ/(kg·K),空氣的焓 $h=C_pT$ (T 的單位為 K)。

【解題關鍵】

- 1.《考題難易》★★
- 2.《破題關鍵》「靜滯(Stagnation)」之意涵、開放系統穩流過程熱力學第一定律之應用、等熵過程溫度與壓力之關係式、理想氣體之音速公式及馬赫數之定義。

【擬答】

- 二、一個封閉的活塞/氣缸組合內含初始壓力為 100 kPa、溫度為 25℃、體積為 0.4 m³ 的空氣,其 先經過一等容加熱過程直到壓力變為 250 kPa,之後再經過一個等壓加熱過程直到體積變為兩 倍。試求: (每小題 10 分,共 30 分)
 - ─)最終溫度為何?(單位取 K)
 - □ 在整個過程中,空氣的作功量為何? (單位取 kJ)
 - (三)在整個過程,加熱空氣的熱量為何? (單位取 kJ)
 - 註:假設此空氣為理想氣體,空氣的等壓比熱與等容比熱皆為定值,等壓比熱 $C_p=1.005$ kJ/(kg·K),等容比熱 $C_v=0.718$ kJ/(kg·K),氣體常數 R=0.287 kJ/(kg·K),空氣的比內能變化可以用 $u_2-u_1=C_v(T_2-T_1)$ 來計算。

【解題關鍵】

- 1.《考題難易》★
- 2. 《破題關鍵》封閉系統等容與等壓過程熱力學第一定律、理想氣體狀態方程式之應用。

【擬答】

1→2:等容加熱

$$Q_{12} - W_{12} = \Delta U_{12} = m\Delta u_{12} = mC_v(T_2 - T_1)$$

共4頁 第1頁

公職王歷屆試題 (113 高考)

其中
$$W_{12} = \int_{1}^{2} Pd \forall = 0$$
, $m = \frac{P_{1} \forall_{1}}{RT_{1}} = 0.4677 kg$, $\frac{P_{2} \forall_{2}}{P_{1} \forall_{1}} = \frac{mRT_{2}}{mRT_{1}} \Rightarrow T_{2} = \left(\frac{P_{2}}{P_{1}}\right)T_{1} = 745 K$

故 $Q_{12} = 150.11kJ$,其中正號表示輸入熱。

2→3:等壓加熱

$$Q_{23} - W_{23} = \Delta U_{23} = m\Delta u_{23} = mC_v(T_3 - T_2)$$

其中
$$W_{23} = \int_2^3 Pd \forall = P_2(\forall_3 - \forall_2) = 100 kJ$$
, $\frac{P_3 \forall_3}{P_2 \forall_2} = \frac{mRT_3}{mRT_2} \Rightarrow T_3 = \left(\frac{\forall_3}{\forall_2}\right)T_2 = 1490 K$

故 $Q_{23} = 250.18kJ$,其中正號表示輸入熱。

$$(-)T_3 = 1490K$$

$$(=)W_{net} = W_{12} + W_{23} = 100kJ$$

$$(\Xi)Q_{net} = Q_{12} + Q_{23} = 400.29kJ$$

- 三、一個體積為 1.0 m^3 的封閉剛性容器置於一個加熱板上。剛開始的時候,容器內含有水的飽和液(Saturated liquid)和飽和汽(Saturated vapor)的雨相混合物,在壓力 P_1 = 1 bar 的情況下,乾度(Quality)為 0.6。經過加熱後,容器內的壓力為 P_2 = 1.5 bar。試利用下方飽和水之特性表決定:
 - (→)狀態1和2的溫度(單位取℃)(每個答案5分,共10分)
 - □狀態 1 和 2 的飽和汽質量 (單位取 kg) (每個答案 5 分,共 10 分)
 - (三)如果繼續加熱至容器中的水全部變成飽和汽時,試求此時的壓力(單位取 bar)(10 分)

		Specific volume m ³ /kg	
Pressure	Temperature		
bar	°C	Sat. Liquid	Sat. Vapor
		$v_{ m f}$	$v_{ m g}$
0.8	93.50	1.0380×10 ⁻³	2.087
0.9	96.71	1.0410×10 ⁻³	1.869
1.0	99.63	1.0432×10 ⁻³	1.694
1.5	111.4	1.0528×10^{-3}	1.159
2.0	120.2	1.0605×10 ⁻³	0.8857
2.5	127.3	1.0672×10 ⁻³	0.7187
3.0	133.6	1.0732×10 ⁻³	0.6058
3.5	138.9	1.0786×10 ⁻³	0.5243
4.0	143.6	1.0836×10 ⁻³	0.4625
4.5	147.9	1.0882×10 ⁻³	0.4140

【解題關鍵】

- 1.《考題難易》★★
- 2. 《破題關鍵》熱力性質表之應用、乾度之定義與應用。

【擬答】

狀態 1: 飽和狀態(液汽共存之兩相混合物)

由
$$P_1 = 1bar$$
查表可得 $T_1 = T_{sat@P_1} = 99.63$ °C及 $v_f = 1.0432 \times 10^{-3} \, m^3/kg$ 、 $v_g = 1.694 \, m^3/kg$

$$\therefore v_1 = v_f + x_1 v_{fg} = v_f + x_1 (v_g - v_f) = 1.01682 \, m^3 / kg$$

共4頁 第2頁

全國最大公教職網站 https://www.public.com.tw

公職王歷屆試題 (113 高考)

$$\forall_1 = mv_1 \Longrightarrow m = \frac{\forall_1}{v_1} = 0.9835kg$$
, $\not to x_1 = \frac{m_{g1}}{m} \Longrightarrow m_{g1} = x_1m = 0.5901kg$

狀態 $2: \forall_1 = \forall_2 = 1m^3$,m = 0.9835kg,故 $v_2 = v_1 = 1.01682\,m^3/kg$ 由 $P_2 = 1.5bar$ 查表可得 $v_f = 1.0528 \times 10^{-3}\,m^3/kg$ 、 $v_g = 1.159\,m^3/kg$

 $v_f < v_2 < v_g$,故狀態 2 為飽和狀態(液汽共存之兩相混合物)

$$v_2 = v_f + x_2 v_{fg} = v_f + x_2 (v_g - v_f) \Longrightarrow x_2 = 0.877$$

$$x_2 = \frac{m_{g2}}{m} \Rightarrow m_{g2} = x_2 m = 0.8625 kg$$

由於狀態 2 為飽和狀態,故由 $P_2=1.5bar$ 查表可得 $T_2=T_{sat@P_2}=111.4^{\circ}$ C

狀態 $3: \forall_3 = \forall_2 = \forall_1 = 1m^3$, $m = 0.9835kg = m_g$

故 $v_3 = v_2 = v_1 = 1.01682 \, m^3 / kg = v_{3q}$

由 $v_{3g} = 1.01682 \, m^3 / kg$ 查表並配合內插法可得 $P_3 = 1.76 \, bar$

$$(-)T_1 = T_{sat@P_1} = 99.63$$
°C $T_2 = T_{sat@P_2} = 111.4$ °C

 $(=)m_{g1} = 0.5901kg , m_{g2} = 0.8625kg$

 $(\Xi)P_3 = 1.76bar$

四、試回答下列兩個問題:

- ○兩部引擎的熱效率均為40%,引擎A從一個600 K的高溫熱池(Thermal reservoir)吸收熱量,而引擎B則從一個1,200 K的高溫熱池吸收熱量,兩個引擎都將熱量排給一個溫度為300 K的熱池,假設過程中各熱池的溫度皆固定,試分別求出此兩部引擎的第二定律效率。(每個答案5分,共10分)
- □兩部冷凍機的性能係數均為 2.0,冷凍機 C 從一個 300 K 的熱池吸收熱量,而冷凍機 D 則 從一個 320 K 的熱池吸收熱量,兩部冷凍機都將熱量排至一個溫度為 400 K 的高溫熱池,假設過程中各熱池的溫度皆固定,試分別求出此兩部冷凍機的第二定律效率。(每個答案 5 分,共 10 分)

共4頁 第3頁

【解題關鍵】

- 1.《考題難易》★
- 2. 《破題關鍵》熱機與冷機之第二定律效率之應用。

【擬答】

(--)

$$\eta_{rev,A} = \left(1 - \frac{T_L}{T_H}\right)_A = 0.5$$
,故 $\eta_{II,A} = \frac{\eta_A}{\eta_{rev,A}} = 80\%$
 $\eta_{rev,B} = \left(1 - \frac{T_L}{T_H}\right)_B = 0.75$,故 $\eta_{II,B} = \frac{\eta_B}{\eta_{rev,B}} = 53.3\%$

 $(\underline{\hspace{1cm}})$

$$COP_{rev,C} = \left(\frac{T_L}{T_H - T_L}\right)_C = 3$$
,故 $\eta_{II,C} = \frac{COP_C}{COP_{rev,C}} = 66.7\%$
 $COP_{rev,D} = \left(\frac{T_L}{T_H - T_L}\right)_D = 4$,故 $\eta_{II,D} = \frac{COP_D}{COP_{rev,D}} = 50\%$

志光×學儒×保成 為你絕佳助攻

5大衝刺課程 帶你直攻 地方特秀

埋頭苦練 不如讓老師點通學習之路

常考題型 知識強化

易錯題型 觀念釐清

考前複習 最新考情

題庫班

各科名師專業訓練 審題神速、答題神準 讀書精熟+答題精準=快速上榜

題庫演練

精準教學

解題技巧

作文實戰班

總複習

考點update!時事修法update!

作文學得好,同時提升寫作能力與論述邏輯

高分 寫作指引

關鍵者點

強化 論述深度

架構 分層演練

新式 作文教戰